₹ ридан

Каталог

Радиаторные **терморегуляторы** и балансировочные **клапаны**

Август 2022

Радиаторные терморегуляторы и балансировочные клапаны

Каталог

- Термостатические элементы радиаторных терморегуляторов
- Клапаны радиаторных терморегуляторов
- Запорно-присоединительные радиаторные клапаны
- Автоматические балансировочные клапаны
- Ручные балансировочные клапаны

Настоящий каталог «Балансировочные клапаны» составлен по материалам компании «Данфосс» и включает сведения об автоматических и ручных балансировочных клапанах, поставляемых компанией «Данфосс» на российский рынок для трубопроводных систем инженерного обеспечения зданий (отопления, тепло- и холодоснабжения вентиляционных установок и кондиционеров, горячего и холодного водоснабжения и др.).

При переиздании были внесены изменения в номенклатуру балансировочных клапанов, а также исправлены замеченные ошибки и опечатки.

В каталоге для каждого вида клапанов даны область применения, основные технические характеристики, номенклатура, заводские кодовые номера изделий для оформления заказов, данные для подбора, габаритные и присоединительные размеры.

Каталог предназначен для проектных, монтажно-наладочных и эксплуатационных организаций, а также для фирм, осуществляющих комплектацию оборудованием объектов строительства или торговые функции.

Замечания и предложения будут приняты с благодарностью. Просим направлять их по факсу (495) 792-57-59 или по электронной почте: Sergunin@danfoss.ru.

Содержание

Термостатический элемент TR 84	
Клапан терморегулятора с предварительной настройкой TR-N	9
Клапан терморегулятора с повышенной пропускной способностью TR-G ТR-G	
Клапаны запорные радиаторные LV	
Клапан запорно-присоединительный LV-КВ	
Автоматический балансировочный клапан APT-R DN15–50	23
Ручной балансировочный клапан MVT-R DN15–50	
Ручной балансировочный клапан MNT-R DN15–50	

Термостатический элемент TR 84

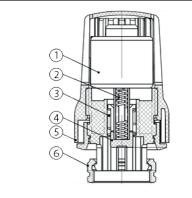
Описание и область применения

Термостатические элементы серии TR 84 — устройства автоматического регулирования температуры, предназначенные для

комплектации радиаторных терморегуляторов типа TR.

Радиаторный терморегулятор представляет собой пропорциональный регулятор температуры воздуха прямого действия с малой зоной пропорциональности, которыми в настоящее время оснащаются системы отопления зданий различного назначения.

Терморегулятор типа TR состоит из двух частей: универсального термостатического элемента серии TR 84 и регулирующего клапана с предварительной настройкой пропускной способности TR-N (для двухтрубных систем отопления) или TR-G (для однотрубной системы).


Термостатические элементы серии TR 84 снабжены устройствами защиты системы от замерзания, фиксирования и ограничения температурной настройки.

Номенклатура и кодовые номера для оформления заказа

Тип	Описание	Диапазон настройки температуры, °С	Кодовый номер
TR 84	Термоэлемент со встроенным датчи- ком	6 – 28	013G7084R

Устройство и принцип действия

2022

- 1 Сильфон
- 2 Разгрузочная пружина
- 3 Настроечная пружина
- 4 Шток
- 5 Настроечная рукоятка со шкалой
- 6 Присоединительная гайка М30Х1.5

Основное устройство термостатического элемента — сильфон, который обеспечивает пропорциональное регулирование. Датчик термоэлемента воспринимает изменение температуры окружающего воздуха.

Сильфон и датчик заполнены специальной термочувствительной жидкостью.

Выверенное давление в сильфоне соответствует температуре его зарядки. Это давление сбалансировано силой сжатия настроечной пружины. При повышении температуры воздуха вокруг датчика жидкость расширяется, и давление в сильфоне растет. При этом сильфон увеличивается в объеме, перемещая золотник клапана в сторону закрытия отверстия для протока теплоносителя в отопительный прибор до тех пор, пока не будет достигнуто равновесие между усилием пружины и давлением жидкости.

При понижении температуры воздуха жидкость начинает сжиматься, и давление в сильфоне падает, что приводит к уменьшению его объема и перемещению золотника клапана в сторону открытия до положения, при котором вновь установится равновесие системы.

Для исключения влияния теплого воздуха от греющего патрубка отопительного прибора рекомендуется устанавливать термостатические элементы, как правило, в горизонтальном положении.

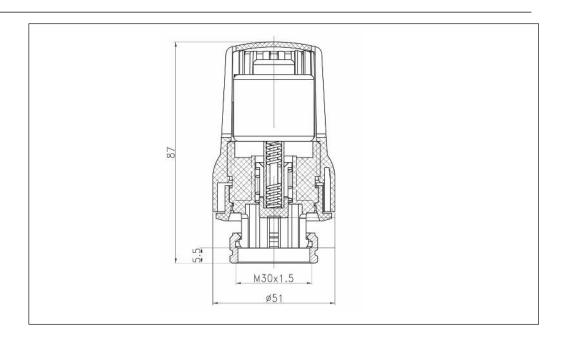
Ограничение и блокировка настройки температуры

Термостатический элемент комплектуется фиксаторами настройки, которые по умолчанию установлены в крайних положениях на термоэлементе и позволяют настраивать его в диапазоне от «*» до «5».

Для ограничения максимальной настройки необходимо извлечь фиксатор и установить его в паз на рукоятке на требуемую максимальную величину, при этом указатель настройки

на термоэлементе должен находиться напротив меньшего значения настройки.

Аналогично выполняется ограничение минимальной температуры, для этого фиксатор настройки устанавливается на меньшей настройке, а указатель настройки термоэлемента должен находиться напротив большего значения настройки.


Метка на шкале	*	1	2	3	4	5
Настройка, °С	6	12	16	20	24	28

«*» - морозозащитная настройка

Фиксаторы настройки (входят в комплект поставки)

Габаритные и присоединительные размеры

Центральный офис • ООО «Данфосс»

Россия, 143581 Московская обл., г. Истра, д. Лешково, 217.

Телефоны: +7(495) 792-57-57 (Москва), +8 (800) 700 888 5 (регионы). E-mail: he@danfoss.ru open.danfoss.ru

Компания «Данфосс» не несет ответственности за опечатки в каталогах, брошюрах и других изданиях, а также оставляет за собой право на модернизацию своей продукции без предварительного оповещения. Это относится также к уже заказанным изделиям при условии, что такие изменения не повлекут за собой последующих корректировок уже согласованных спецификаций. Все торговые марки в этом материале являются собственностью соответствующих компаний. «Данфосс», логотип «Danfoss» являются торговыми марками компании ООО «Данфосс». Все права защищены.

Термостатический элемент TR 70

Описание и область применения


Термостатические элементы серии TR 70 — устройства автоматического регулирования температуры, предназначенные для комплектации радиаторных терморегуляторов Danfoss типа RA-N/G и RTR-N/G.

Радиаторный терморегулятор представляет собой пропорциональный регулятор температуры воздуха прямого действия с малой зоной пропорциональности, которыми в настоящее время оснащаются системы отопления зданий различного назначения.

Номенклатура и кодовые номера для оформления заказа

Тип	Описание	Диапазон настройки температуры, °С	Кодовый номер	
TR 70	Термоэлемент со встроен-ным датчи- ком, с креплением RA для установки на клапаны Danfoss RTR-N/G, RA-N/G	6 – 28	013G7070R	

Устройство и принцип действия

Основное устройство термостатического элемента — сильфон, который обеспечивает пропорциональное регулирование. Датчик термоэлемента воспринимает изменение температуры окружающего воздуха. Сильфон и датчик заполнены специальной термочувствительной жидкостью.

Выверенное давление в сильфоне соответствует температуре его зарядки. Это давление сбалансировано силой сжатия настроечной пружины. При повышении температуры воздуха вокруг датчика жидкость расширяется, и давление в сильфоне растет. При этом сильфон увеличивается в объеме, перемещая золотник клапана в сторону закрытия отверстия для протока теплоносителя в отопительный

прибор до тех пор, пока не будет достигнуто равновесие между усилием пружины и давлением жидкости.

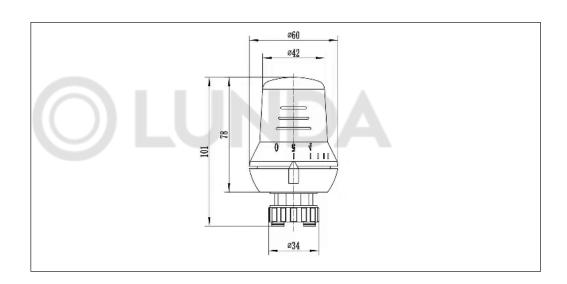
При понижении температуры воздуха жидкость начинает сжиматься, и давление в сильфоне падает, что приводит к уменьшению его объема и перемещению золотника клапана в сторону открытия до положения, при котором вновь установится равновесие системы.

Для исключения влияния теплого воздуха от греющего патрубка отопительного прибора рекомендуется устанавливать термостатические элементы, как правило, в горизонтальном положении.

Установка температуры

Термостатический элемент настраивается на требуемую комнатную температуру поворотом его рукоятки с нанесенной на нее цифровой шкалой.

Цифры на шкале корреспондируются с поддерживаемой регулятором температурой воздуха в помещении. Их соотношение показано на рисунке. Указанные величины являются ориентировочными, так как фактическая


температура в помещении часто отличается от температуры воздуха вокруг термоэлемента и зависит от условий его размещения.

Температурные шкалы в соответствии с европейскими стандартами составлены при Xp = 2 °C. Это означает, что клапан терморегулятора закроется полностью, когда температура воздуха в помещении превысит температуру настройки по шкале термоэлемента на 2 °C.

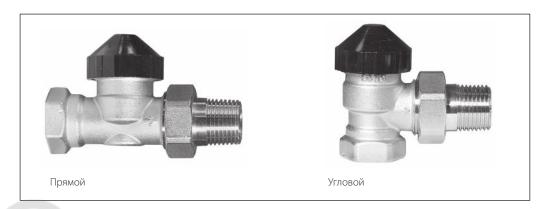
Метка на шкале	*	1	2	3	4	5
Настройка, °С	6	12	16	20	24	28

«*» - морозозащитная настройка

Габаритные и присоединительные размеры

Центральный офис • ООО «Данфосс»

Россия, 143581 Московская обл., г. Истра, д. Лешково, 217.

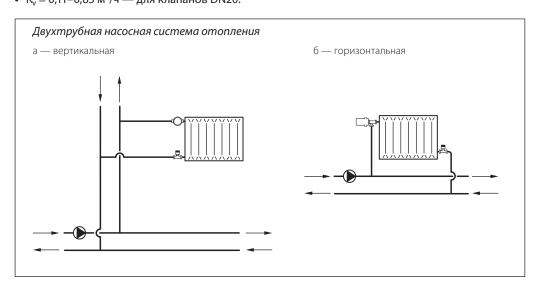

Телефоны: +7(495) 792-57-57 (Москва), +8 (800) 700 888 5 (регионы). E-mail: he@danfoss.ru open.danfoss.ru

Компания «Данфосс» не несет ответственности за опечатки в каталогах, брошюрах и других изданиях, а также оставляет за собой право на модернизацию своей продукции без предварительного оповещения. Это относится также к уже заказанным изделиям при условии, что такие изменения не повлекут за собой последующих корректировок уже согласованных спецификаций. Все торговые марки в этом материале являются собственностью соответствующих компаний. «Данфосс», логотип «Danfoss» являются торговыми марками компании ООО «Данфосс». Все права защищены.

Клапан терморегулятора с предварительной настройкой TR-N

Описание и область применения

Регулирующий клапан TR-N предназначен для применения в двухтрубных насосных системах водяного отопления.


TR-N оснащен встроенным устройством, для предварительной (монтажной) настройки его пропускной способности в рамках следующих диапазонов:

- $K_v = 0.09 0.75 \text{ м}^3/\text{ч}$ для клапанов DN15;
- $K_v = 0.11-0.85 \text{ м}^3/\text{ч}$ для клапанов DN20.

Клапан TR-N может сочетаться с термостатическим элементом TR 84.

Для идентификации клапанов TR-N их защитные колпачки окрашены в черный цвет. Защитный колпачок не должен использоваться для перекрытия потока теплоносителя через отопительный прибор.

Корпус клапана изготовлен из латуни с никелевым покрытием.

Для предотвращения отложений и коррозии клапаны терморегуляторов TR-N следует применять в системах водяного отопления, где теплоноситель отвечает требованиям Правил технической эксплуатации электрических станций и сетей Российской Федерации.

В других случаях необходимо обращаться в компанию «Данфосс». Не рекомендуется использовать для смазки деталей клапана составы, содержащие нефтепродукты (минеральные масла).

Номенклатура и кодовые номера для оформления заказа

	_ Исполне-	Резьба штуцеров, дюймы		Макс. пропускная	Пропускная способность при Хр 2C, К _V , м ³ /ч						Макс. темп.	Кодовый						
Тип	ние	к трубопро- воду	наружн. R (к радиатору)	способность, К _{VS} , м ³ /ч	6	5	4	3	2	1	PN, бар	теплоноси- теля,°С	номер					
DN 15	Угловой	1,	1/	1/	1/	1/	1/	0.75	0.4	0,3	0.25	0.17	0.14	0.00			013G7013R	
DN 15	Прямой	1/2	1/2	0,75	0,4	0,3	0,25	0,17	0,14	0,09	10	120	013G7014R					
DN 30	Угловой	3/	3/	0.05	0.43	0.21	0.27	0.10	0,16 0,1	0.16	0.16	0.16	0.16	0.16	16 011	10	120	013G7015R
DN 20	DN 20 Прямой	3/4	3/4	0,85	0,43	43 0,31	31 0,27	0,19		0,11			013G7016R					

Предварительная настройка

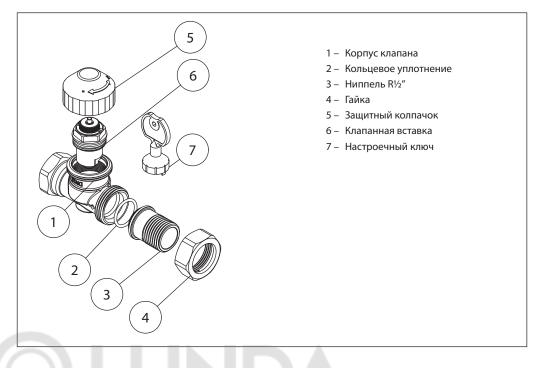
Настройка на расчетное значение производится легко и точно с помощью настроечного ключа (входит в комплект поставки клапана).

Для этого следует произвести следующие операции:

- снять защитный колпачок или термостатический элемент;
- вставить настроечный ключ в пазы клапанной вставки;
- повернуть ключ так, чтобы желаемое значение оказалось напротив установочной отметки «||», расположенной со стороны выходного отверстия клапана (заводская установка «б»);
- убрать настроечный ключ.

Предварительная настройка может производиться в диапазоне от «1» до «6» плавно. В положении «6» клапан полностью открыт.

Когда термостатический элемент смонтирован, то предварительная настройка оказывается спрятанной и таким образом защищенной от неавторизованного изменения.



Для отопительного прибора с подводками DN = 15 мм с боковым подключением к двухтрубному стояку выбираем клапан TR-N DN = 15 мм прямого исполнения (013G7014R) и термостатический элемент TR 84 с

жидкостным встроенным температурным датчиком (**013G7084R**).

Выбор настройки клапана следует осуществлять на основании гидравлического расчета системы отопления.

Устройство

Радиаторный терморегулятор состоит из двух частей: универсального термостатического элемента серии TR и регулирующего клапана с предварительной настройкой TR-N. Термостатический элемент и регулирующий клапан заказываются отдельно

Материалы, контактирующие с теплоносителем

Корпус клапана	Латунь CW617N
Кольцевое уплотнение	Этилен-пропиленовый каучук EPDM
Ниппель R½"	Латунь CW617N
Гайка	Латунь CW617N
Клапанная вставка	Латунь CW617N+ Пластик ABS

Пример определения настройки клапана TR-N

Требуется выбрать номер настройки клапана TR-N, установленного в двухтрубной системе водяного отопления прчи следующих условиях.

- Требуемая мощность радиатора: Q = 1,5 кВт.
- Перепад температур теплоносителя: $\Delta T = 20$ °C.
- Перепад давлений на клапане:
 ΔР = 0,1 бар (10 кПа).

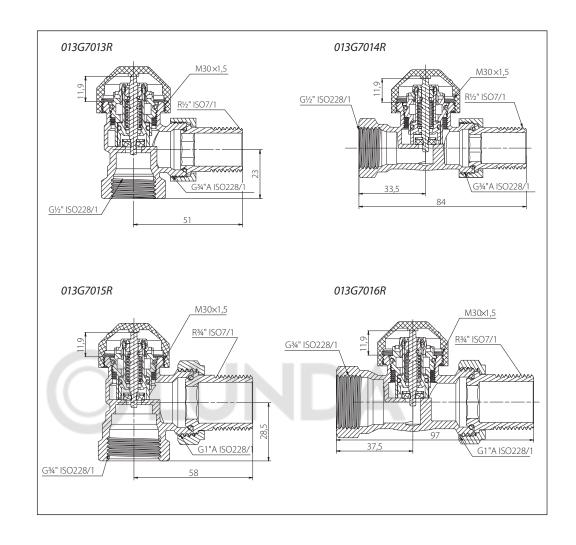
Решение

Расход теплоносителя через радиатор:

$$G = \frac{Q \cdot 860}{\Delta T} = \frac{1.5 \cdot 860}{20} = 64.5 \text{ kg/y} (0.0645 \text{ m}^3/\text{y}).$$

Требуемая пропускная способность клапана:

$$Kv = G/\sqrt{\Delta P}$$
, $6ap$,


где G — расход в м 3 /ч; ΔP — перепад давлений на клапане, бар.

$$K_v = \frac{G}{\sqrt{\Delta P}} = \frac{0.0645}{\sqrt{0.1}} = 0.2 \text{ m}^3/\text{y}.$$

Если полученное значение находится между двумя значениями настройки в таблице, то выбирается наибольший.

В данном случае по расчету получается настройка 4 (K_V 0,25 м 3 /ч) на клапане TR-N DN15.

Габаритные и присоединительные размеры

Центральный офис • ООО «Данфосс»

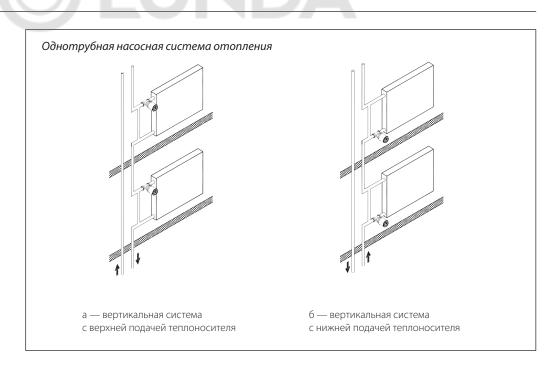
Россия, 143581 Московская обл., г. Истра, д. Лешково, 217.

Телефоны: +7(495) 792-57-57 (Москва), +8 (800) 700 888 5 (регионы). E-mail: he@danfoss.ru open.danfoss.ru

Компания «Данфосс» не несет ответственности за опечатки в каталогах, брошюрах и других изданиях, а также оставляет за собой право на модернизацию своей продукции без предварительного оповещения. Это относится также к уже заказанным изделиям при условии, что такие изменения не повлекут за собой последующих корректировок уже согласованных спецификаций. Все торговые марки в этом материале являются собственностью соответствующих компаний. «Данфосс», логотип «Danfoss» являются торговыми марками компании ООО «Данфосс». Все права защищены.

Клапан терморегулятора с повышенной пропускной способностью TR-G

Описание и область применения



Клапан терморегулирующий с повышенной пропускной способностью TR-G предназначен для применения, как правило, в однотрубных системах водяного отопления с насосной циркуляцией теплоносителя, отвечающего требованиям Правил технической эксплуатации электрических станций и тепловых сетей Российской Федерации. Клапан не рекомендуется использовать, если в теплоносителе присутствуют примеси минерального масла.

Клапаны TR-G могут сочетаться с термостатическими элементами TR 84.

Клапаны TR-G поставляются с белыми (для их идентификации) защитными колпачками, которые не должны использоваться для перекрытия потока теплоносителя.

Примеры применения

Клапан терморегулятора с повышенной пропускной способностью TR-G

Решение TR-G для однотрубной системы

1. В однотрубной системе отопления с терморегуляторами обязательно должен быть предусмотрен замыкающий участок между подающей и обратной подводками к радиатору (см. рис.). Диаметр замыкающего участка рекомендуется принимать на один типоразмер меньше диаметра подводок.

2. Диаметр клапана TR-G следует выбирать по диаметру подводок.

При выполнении вышеуказанных рекомендаций (пункты 1 и 2) расход теплоносителя через отопительный прибор будет не менее 25—30 % от расхода в стояке.

Номенклатура и кодовые номера для оформления заказа

Клапаны TR-G

Тип	Исполнение	Максимальная пропускная способность, KVS, м³/ч	Пропускная способность при Хр 2С, К _V , м ³ /ч	Рабочее давление, бар	Макс. темп. теплоносителя, °C	Кодовый номер
TR-G 15	Прямой	5	1	16	120	013G7024R
TR-G 20	Прямой	5,2	1,3			013G7026R

Выбор клапана TR-G

Пример выбора регулирующего клапана TR-G.

Требуется подобрать диаметр регулирующего клапана для однотрубной гравитационной системы отопления при следующих условиях:

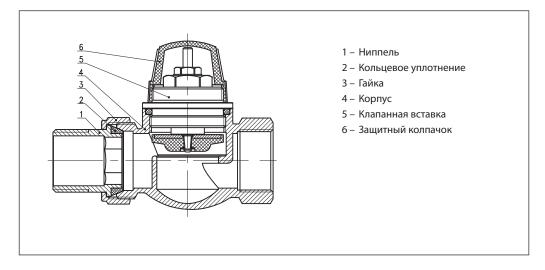
- Требуемая мощность радиатора: Q = 1,5 кВт.
- Перепад температуры теплоносителя: $\Delta T = 20$ °C.
- Перепад давления на клапане:
 ΔP = 0,004 бар (0,4 кПа).

Решение

Расход теплоносителя через отопительный прибор:

$$G = \frac{Q \cdot 860}{\Delta T} = \frac{1.5 \cdot 860}{20} = 64.5 \text{ kg/y (0.0645)}$$

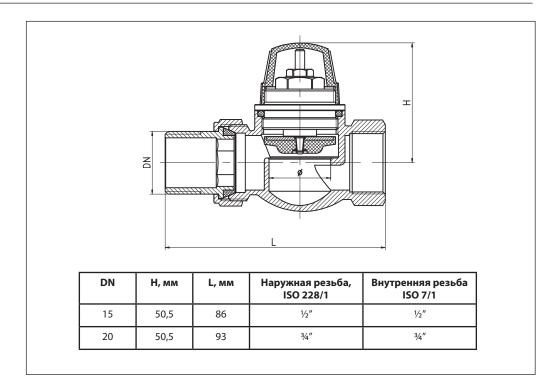
Требуемая пропускная способность:


$$K_v = \frac{G}{\sqrt{\Delta P}} = \frac{0,0645}{\sqrt{0,004}} = 1,02 \text{ m}^3/\text{y}.$$

Далее клапан можно выбрать из таблицы по требуемой пропускной способности.

Расчет выше соответствует $K_V = 1,3 \text{ м}^3/4$ клапана TR-G 20 при $Xp = 2 \,^{\circ}\text{C}$.

Клапан терморегулятора с повышенной пропускной способностью TR-G


Устройство

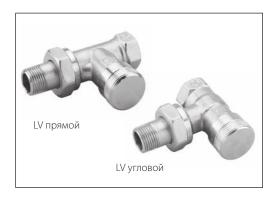
Материалы, контактирующие с теплоносителем

Ниппель R½"	Латунь CW617N				
Кольцевое уплотнение	Этилен-пропиленовый каучук EPDM				
Гайка	Латунь CW617N				
Корпус клапана	Латунь CW617N				
Клапанная вставка	Латунь CW617N				

Габаритные и присоединительные размеры

Центральный офис • ООО «Данфосс»

Россия, 143581 Московская обл., г. Истра, д. Лешково, 217.


Телефоны: +7(495) 792-57-57 (Москва), +8 (800) 700 888 5 (регионы). E-mail: he@danfoss.ru open.danfoss.ru

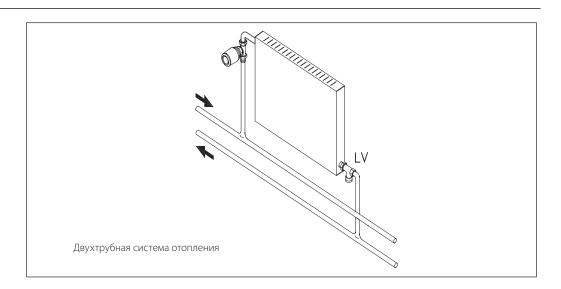
Компания «Данфосс» не несет ответственности за опечатки в каталогах, брошюрах и других изданиях, а также оставляет за собой право на модернизацию своей продукции без предварительного оповещения. Это относится также к уже заказанным изделиям при условии, что такие изменения не повлекут за собой последующих корректировок уже согласованных спецификаций. Все торговые марки в этом материале являются собственностью соответствующих компаний. «Данфосс», логотип «Danfoss» являются торговыми марками компании ООО «Данфосс». Все права защищены.

Клапаны запорные радиаторные LV

Описание и область применения

Клапаны запорные LV предназначены для применения, как правило, в двухтрубных насосных системах водяного отопления для отключения отдельного отопительного прибора для его демонтажа или технического обслуживания без опорожнения всей системы.

LV выпускаются в двух модификациях: прямой и угловой. Клапаны изготавливаются из чистой латуни с никелевым покрытием.


Пропускная способность клапанов LV в открытом положении:

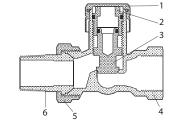
- K_{VS} = 2,5 м³/ч для клапана диаметром ½";
- K_{VS} = 3,0 м³/ч для клапана диаметром ¾". Габаритные и присоединительные размеры LV соответствуют стандарту DIN 3842-1.

Клапан LV позволяет опорожнить отопительный прибор. Для этого необходимо снять крышку с LV и перекрыть клапан, а затем навернуть на него спускной кран. После установки кран можно открыть для слива воды поворотом влево квадратного штифта в его верхней части.

Для предотвращения отложений и коррозии клапаны LV следует применять в системах водяного отопления, где теплоноситель отвечает требованиям Правил технической эксплуатации электрических станций и сетей Российской Федерации.

Пример применения

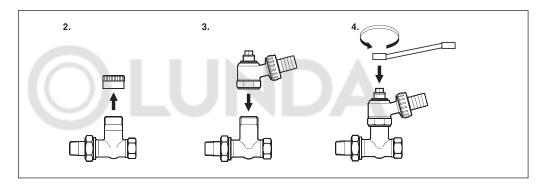
Номенклатура и кодовые номера для оформления заказа


Клапан LV

TOTAL TOTAL											
		Резьба штуцеров, дюймы		Пропускная	Макс. дав	ление, бар	Макс.				
Тип и ис- полнение	DN, mm	внутр. R _p (к трубопро- воду)	наружн. R (к радиа- тору)	способность клапана К _{VS} , м ³ /ч	рабочее	испыта- тельное	темп. воды, °С	Кодовый номер			
LV угловой	1.5	1/	1/	1/-	1/2	1/2	2.5				003L0143R
LV прямой	15	72	/2	2,5	10	16	120	003L0144R			
LV угловой	20	3/.	3/.	3.0	10	10	120	003L0145R			
LV прямой	20	0 3/4 3/4 3,0	3,0				003L0146R				

Устройство

Устройство клапана LV

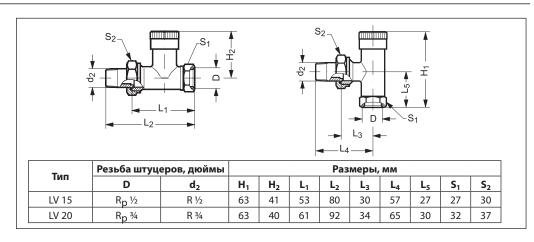

- 1 крышка;
- 2 направляющая втулка;
- 3 запорный конус;
- 4 корпус клапана;
- 5 соединительная гайка;
- 6 ниппель

Материалы, контактирующие с теплоносителем

Корпус клапана и прочие металлические детали	Латунь Ms 58
Кольцевые уплотнения	Бутадиенакрилонитрильный каучук

Монтаж

Клапан запорный LV


LV предназначен для монтажа в выходной пробке радиатора. Чтобы обеспечить последующий слив воды из радиатора, необходимо установить запорный клапан крышкой вперед или вниз.

Спускной кран

Для монтажа спускного крана необходимо выполнить следующие операции:

- 1) перекрыть клапан терморегулятора на входе радиатора. Для предосторожности термостатический элемент необходимо заменить металлической рукояткой Danfoss;
 - 2) снять крышку LV и перекрыть клапан;
- 3) смонтировать спускной кран и надеть шланг на шланговую насадку, повернув ее в удобное положение;
- 4) для спуска воды открыть клапан гаечным ключом.

Габаритные и присоединительные размеры

Центральный офис • ООО «Данфосс»

Россия, 143581 Московская обл., г. Истра, д. Лешково, 217.

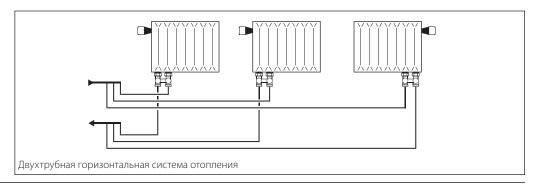
Телефоны: +7(495) 792-57-57 (Москва), +8 (800) 700 888 5 (регионы). E-mail: he@danfoss.ru open.danfoss.ru

Компания «Данфосс» не несет ответственности за опечатки в каталогах, брошюрах и других изданиях, а также оставляет за собой право на модернизацию своей продукции без предварительного оповещения. Это относится также к уже заказанным изделиям при условии, что такие изменения не повлекут за собой последующих корректировок уже согласованных спецификаций. Все торговые марки в этом материале являются собственностью соответствующих компаний. «Данфосс», логотип «Danfoss» являются торговыми марками компании ООО «Данфосс». Все права защищены.

Клапан запорно-присоединительный LV-KB

Описание и область применения

Клапан запорно-присоединительный RLV-KB применяется в двухтрубных системах отопления для подключения отопительных приборов с нижним расположением присоединительных штуцеров с межосевым расстоянием 50 мм. Клапан LV-KB не подходит для присоединения к нему спускного крана.


С помощью LV-KB можно отключить отопительный прибор для его демонтажа или технического обслуживания без опорожнения всей системы отопления.

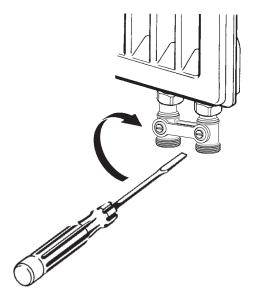
Клапан LV-КВ выполнен из латуни с никелевым покрытием и выпускается в двух версиях: прямой и угловой. Он может быть непосредственно присоединен к радиаторам, имеющим штуцеры с внешней резьбой G ³/₄.

Для штуцеров с внутренней резьбой G ½ необходимо использовать специальный переходник. К LV-КВ с помощью отдельно заказываемых компрессионных фитингов можно присоединять медные, полимерные и металлополимерные трубы.

В целях предотвращения отложений и коррозии клапаны LV-КВ следует применять в системах водяного отопления. При этом теплоноситель должен отвечать требованиям Правил технической эксплуатации электрических станций и сетей Российской Федерации.

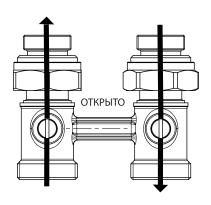
Пример применения

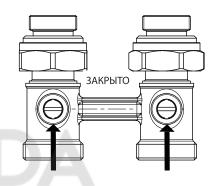
Номенклатура и кодовые номера для оформления заказа


Клапан LV-КВ

_	Резьюа штуцеров, люимы —		Пропускная	Макс. дав	ление, бар	Макс.	W×		
Тип и испол- нение	к радиатору	способн		рабочее	испыта- тельное	темп. воды, °С	Кодовый номер		
LV-KB угловой	Наружная G ½ А Внутренняя	C 1/ A	Наружная						003L0394R
LV-КВ прямой			Наружная	1.4	10	1.0	120	003L0392R	
LV-KB угловой		- 1,4 I	1,4	10	16	120	003L0393R		
LV-КВ прямой	G 3/4					003L0391R			

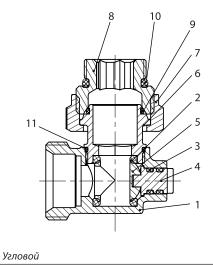
Дополнительные принадлежности


Эскиз	Описание	Кодовый номер
	Самоуплотняющийся соединительный переходник для штуцеров радиатора с внутренней резьбой G ½	003L0399 R


Регулировка

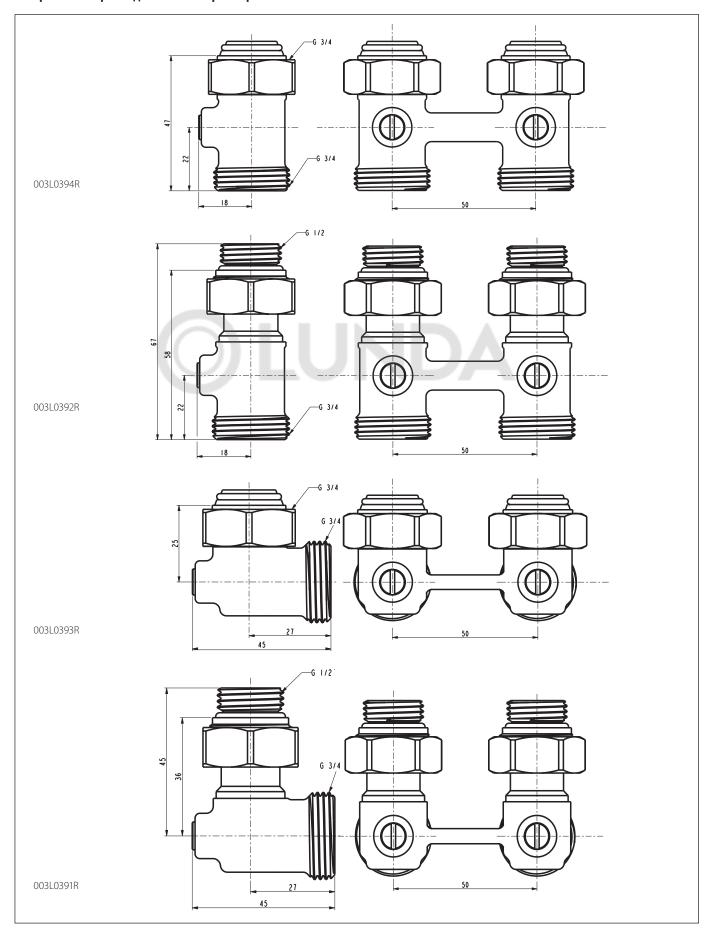
Для настройки полного открытия или закрытия клапана используйте плоскую отвертку, соответствующую размеру паза.

ПРИМЕЧАНИЕ. Убедитесь, что поверхность под уплотнение на радиаторе подходит для установки кольцевого уплотнения.



Устройство

Прямой


Устройство клапана LV-КВ

- 1 Корпус клапана
- 2 Уплотнение шара
- 3 Кольцевое уплотнение
- 4 Шток
- 5 Шар
- 6 Переходник
- Накидная гайка
- 8 Адаптер
- 9 Кольцевое уплотнение переходника
- 10 Кольцевое уплотнение адаптера 11 Кольцевое уплотнение корпуса

Материалы, контактирующие с теплоносителем

Корпус клапана и прочие металлические детали	Латунь CW617N
Кольцевые уплотнения	EPDM
Уплотнение шара	PTFE

Габаритные и присоединительные размеры

Центральный офис • ООО «Данфосс»

Россия, 143581 Московская обл., г. Истра, д. Лешково, 217.

Телефоны: +7(495) 792-57-57 (Москва), +8 (800) 700 888 5 (регионы). E-mail: he@danfoss.ru open.danfoss.ru

Компания «Данфосс» не несет ответственности за опечатки в каталогах, брошюрах и других изданиях, а также оставляет за собой право на модернизацию своей продукции без предварительного оповещения. Это относится также к уже заказанным изделиям при условии, что такие изменения не повлекут за собой последующих корректировок уже согласованных спецификаций. Все торговые марки в этом материале являются собственностью соответствующих компаний. «Данфосс», логотип «Danfoss» являются торговыми марками компании ООО «Данфосс». Все права защищены.

Автоматический балансировочный клапан APT-R DN15-50

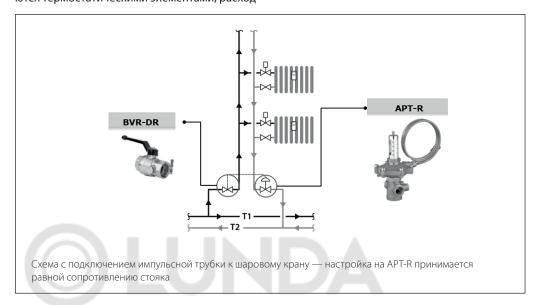
Описание и область применения

Балансировочный клапан АРТ-R предназначен в основном для двухтрубных систем отопления с автоматическими терморегуляторами, а также для систем теплохолодоснабжения с переменным расходом. Благодаря встроенному мембранному блоку клапан обеспечивает поддержание необходимого значения перепада давления для определенной зоны гидравлической системы. Требуемый перепад давления может быть настроен в диапазоне 5–35 кПа и автоматически поддерживается на заданном уровне, поэтому данный клапан также можно назвать автоматическим регулятором перепада давления.

APT-R устанавливаются только на обратный трубопровод, согласно направлению движения жидкости в соответствии со стрелкой на корпусе клапана.

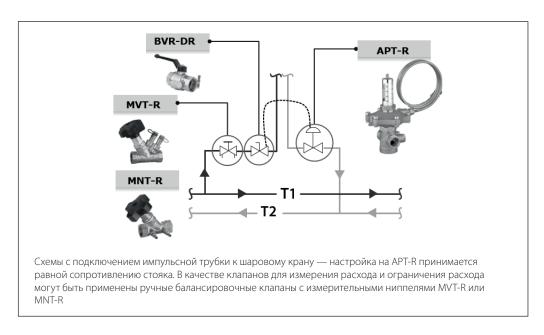
В комплект каждого клапана входит импульсная трубка, которая с одной стороны подключается в верхнюю часть мембранного блока, а с другой стороны подключается к симметричному подающему участку системы. Подключение импульсной трубки к подающему трубопроводу можно выполнить через шаровой кран серии BVR-DR с воздуховыпускным устройством, используя специальный переходник. Также импульсную трубку можно вкрутить в специально подготовленный тройник или бобышку с соответствующей внутренней резьбой.

Настройка регулятора выполняется вращением настроечного блока «от руки» в соответствии со шкалой настройки, размеченной от 1 до 8. Более подробно настройка рассмотрена в разделе «Монтаж и наладка».


Клапан APT-R обладает следующими основными функциями:

- автоматическое поддержание настроенного перепада давлений
- удаление воздуха из верхней и нижней полостей мембранного блока
- промывка через специально предусмотренные выходы с заглушками, а также через съёмную заглушку в нижней части клапана
- слив теплоносителя через дополнительный дренажный кран, который может быть вкручен в один из предусмотренных выходов.

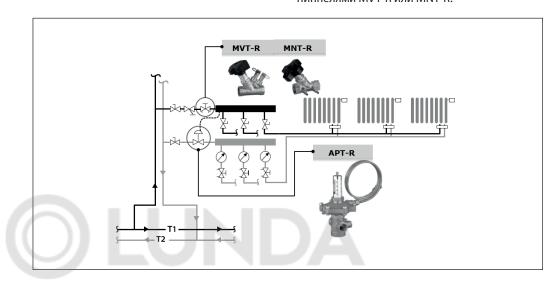
Примеры применения


Вариант использования регуляторов АРТ-R в двухтрубной вертикальной системе отопления. Как правило в таких системах у отопительных приборов применяются клапаны терморегуляторов с предварительной настройкой пропускной способности и оснащаются термостатическими элементами, расход

теплоносителя при этом переменный. В этом случае для обеспечения правильной работы автоматических терморегуляторов необходимо поддерживать постоянный перепад на стояке. Клапаны в этом случае устанавливаются на каждый стояк системы.

Вариант применения для вертикальной двухтрубной системы отопления. В данном решении предусмотрен ручной балансировочный клапан на подающем трубопроводе. Ручной клапан позволяют провести

измерения с помощью прибора компьютерной наладки и настроить регулятор APT-R на требуемый расход, при этом ручной балансировочный клапан должен быть настроен на минимальный перепад 3 кПа.


Примеры применения *(продолжение)*

Вариант применения в горизонтальной двухтрубной системе отопления. Клапаны APT-R в этом случае как правило устанавливаются в этажных распределительных узлах и обеспечивают постоянный перепад для всех потребителей на этаже.

В данной схеме подключение импульсной трубки может быть выполнено

непосредственно в подающий коллектор (как это сделано в TDU5), либо к шаровому крану.

Настройка на APT-R принимается равной сопротивлению квартирной ветки с наибольшими потерями давления. В качестве клапанов для измерения и ограничения расхода на весь узел могут быть применены ручные балансировочные клапаны с измерительными ниппелями MVT-R или MNT-R.

Номенклатура и кодовые номера для оформления заказа

Клапан АРТ-R

Эскиз	DN, mm	Пропускная способность Kvs, м³/ч	Размер наружной резьбы по ISO 7/1, дюймы	Диапазон настройки, кПа	Кодовый номер
	15	1,9	Rp 3/4		003Z5701R
th (20	2,9	R _p 1	5.35	003Z5702R
	25	5,3	R _p 11/4		003Z5703R
	32	9,3	R _p 1½	5–35	003Z5704R
	40	15	R _p 2		003Z5705R
	50	15	Rp 2½]	003Z5706R

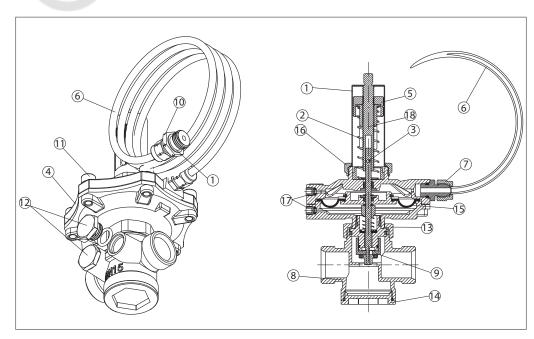
Шаровой кран BVR-DR для подключения импульсной трубки

Эскиз	DN, mm	Пропускная способ- ность Kvs, м³/ч	Размер внутр. резьбы, дюймы	Кодовый номер
_	15	15	Rp 1⁄2	065B8216R
	20	28	Rp 3/4	065B8217R
	25	39	R _p 1	065B8218R
50	32	84	Rp 1¼	065B8219R
	40	156	Rp 1½	065B8220R
	50	243	Rp 2	065B8221R

Резьбовые присоединительные фитинги для клапанов с наружной резьбой

Эскиз	Описание	DN, mm	Подключение	Кодовый номер
	Фитинги для APT-R	15	Rp 1/2	003Z0232R
		20	Rp 3/4	003Z0233F
		25	R _p 1	003Z0234F
		32	Rp 11/4	003Z0235F
		40	Rp 1½	003Z0279F
		50	Rp 2	003Z0278F

Номенклатура и кодовые номера для оформления заказа (продолжение)

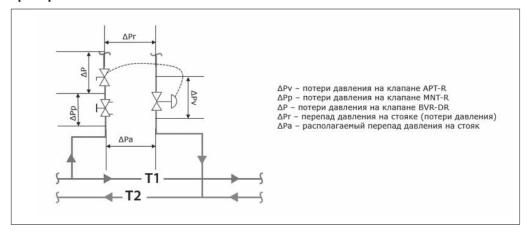

Дополнительные принадлежности

Эскиз	Описание	Размер	Кодовый номер
	Спускной кран, G ¾ A, для АРТ-R	DN15-50	003L8141R
	Адаптер для присоединения импульсной трубки APT-R к другим запорным клапанам с отверстиями R 1⁄4	DN15-50	003L8151R
	Импульсная трубка 1 м для APT-R	DN15-50	003L8152R
	Заглушка ¼"	DN15-50	003L8174R

Технические характеристики

Номинальный диаметр, мм	15–50		
Макс. рабочее давление PN, бар	DN 15 — PN 16, DN 20-50 — PN 20		
Испытательное давление, бар	25		
Перепад давления на клапане, кПа	10–150		
Рабочая температура среды, С	0120		
Температура транспортировки и хранения, С	-4070		
Материалы и детали, контактирующие с водой			
Корпус клапана	Латунь		
Золотник	Латунь		
Мембрана и уплотнения	EPDM		
Пружина	Сталь		

Устройство



- 1. Блок настройки
- 2. Настроечная пружина
- 3. Шток регулятора давления
- 4. Мембранный блок
- 5. Настроечное кольцо
- 6. Импульсная трубка
- 7. Присоединительный ниппель импульсной трубки
- 8. Корпус клапана
- 9. Золотник (конус)
- 10. Переходной ниппель на R 1/4
- 11. Зажимной винт нижней и верхней крышки мембранного блока

- 12. Заглушки для элементов слива
- 13. Соединительная гайка мембранного блока и корпуса
- 14. Заглушка нижней части корпуса клапана
- 15. Мембрана
- 16. Соединительная гайка мембранного и настроечного блока
- 17. Отверстия для выпуска воздуха из нижней и верхней полости мембранного блока, закрытые винтами под шестигранник
- 18. Настроечный винт штока клапана

Примеры подбора клапана

Пример 1

Дано:

Вертикальная система радиаторного отопления с термостатическими клапанами и функцией преднастройки. Расчетный расход теплоносителя через стояк (Q): 900 л/ч.

Минимальный располагаемый напор (Δ Pa): 40 кПа.

Расчетные потери давления на стояке при расчетном расходе (ΔPr): 10 кПа. Диаметр стояка 25 мм.

Найти:

Размер и настройку клапанов APT-R и MVT-R.

Решение:

Как правило радиаторные клапаны оснащены функцией преднастройки и в этом случае допустимо выбрать решение без клапана партнера. Но наличие на подаче клапана, который имеет настройку пропускной способности и возможность подключить прибор наладки к измерительным ниппелям облегчает пусконаладочные и эксплуатационные работы. В качестве такого клапана предусмотрен MVT-R.

В случае применения клапанов APT-R в качестве основного элемента балансировки, перепад на клапане MVT-R принимается минимально необходимым для проведения точных измерений и равен 3 кПа, а диаметр выбирается по диаметру стояка.

APT-R должен поддерживать перепад давлений на стояке 10 кПа, далее определим расчетный перепад на данном клапане.

Пример 2

Корректировка расхода с помощью изменения настройки перепада давления.

Дано

Расход проходящий через стояк: Q1 = 900 л/ч. Настройка APT-R: Δ Pr = 10 кПа (0,1 бар).

Найти:

Настройку перепада давления Δ P2 APT-R, при которой расход через стояк вырастет на 10 % и составит Q2 = 990 л/ч.

Потери давления на клапане АРТ-R составят:

$$\Delta Pv = \Delta Pa - \Delta Pr - \Delta Pp = 40 - 10 - 3 = 27 \text{ k} \Pi a.$$

Потерями на шаровом кране можно пренебречь.

Исходя из условия минимального перепада на APT-R 10кПа, определяем минимальное значение пропускной способности при расчетном расходе:

$$K_{V(min)} = G(M^3/4)/\sqrt{\Delta P_{min}(6ap)} = 0.9/\sqrt{0.1} = 2.8 M^3/4.$$

Диаметр клапана можно принять по диаметру стояка, но более правильно с точки зрения дальнейшего точного регулирования перепада, диаметр APT-R нужно выбрать таким образом, чтобы KVS выбранного клапана было меньше $K_{v(min)}$, т. е. «перебираем» диаметры и как только $K_{v(min)}$ стало меньше KVS, выбираем данный диаметр.

Принимаем диаметр клапана APT-R 20 мм $KVS = 2,9 \text{ м}^3/\text{ч}$, настройка $N = 2 \ (\sim 10 \text{ кПа})$.

Расчетное значение пропускной способности на клапане MVT-R составляет:

$$K_v = G (M^3/4)/\sqrt{\Delta P} (6ap) = 0.9/\sqrt{0.03} = 5.2 M^3/4$$
.

Диаметр клапана MVT-R принимаем по диаметру стояка 25 мм, настройка N = 3,4 (см. техническое описание MVT-R).

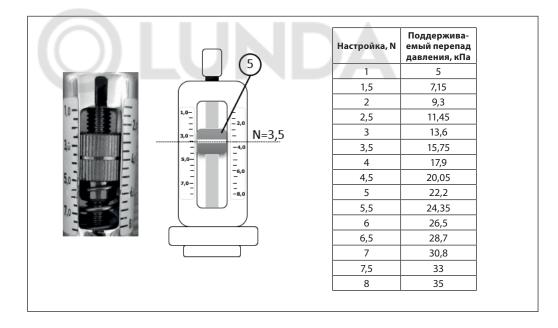
Решение:

Увеличивая или уменьшая настройку перепада давления, поддерживаемого клапаном APT-R, можно изменять расход, проходящий через стояк

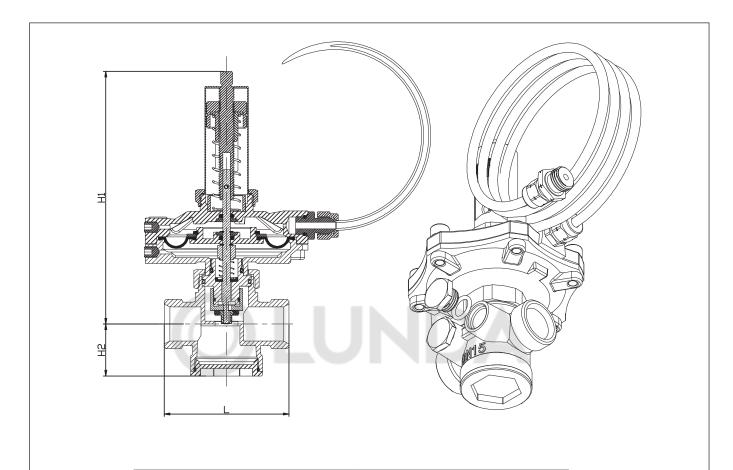
$$\Delta P2 = \Delta Pr \cdot (Q2/Q1)^2 = 0.1 \cdot (990/900)^2 = 12 \text{ } \kappa \Pi a.$$

При увеличении настройки перепада до 12 кПа расход через стояк вырастет до 990 л/ч. Настройка клапана АРТ-R будет ~2,5.

Монтаж


Клапан АРТ-R должен быть установлен на обратном трубопроводе системы отопления так, чтобы направление движения теплоносителя совпадало с направлением стрелки, нанесенной на корпус клапана. Импульсная трубка должна быть подключена к симметричному подающему участку системы или к установленному на подающем трубопроводе

шаровому крану BVR-DR. Импульсная трубка должна быть промыта перед подключением к клапану APT-R. Малые монтажные размеры клапана позволяют устанавливать его в ограниченном пространстве. Элементы клапана расположены под углом 90° друг к другу, обеспечивая удобство обслуживания клапана.


Настройка перепада давления

Настройка производится с помощью настроечного блока без применения дополнительных инструментов. Вращение настроечного кольца 5 или настроечного винта 18 штока клапана по часовой стрелке уменьшает значение настройки, против — увеличивает. Настроечное кольцо имеет круговую насечку, которую необходимо совместить с требуемым значением регулируемого перепада на шкале (размеченной от 1 до 8) нанесенной на

корпусе настроечного блока. Настроечная шкала размечена с шагом 0,5. Диапазон настройки перепада давления от 5 до 35 кПа. Изменение настройки на одно деление изменяет значение перепада на 2,15 кПа. На рисунке положение настроечного кольца совпадает со значением 3,5, что соответствует перепаду в 15,75 кПа. Соответствие значения настройки и регулируемого перепада представлено в таблице ниже.

Габаритные и присоединительные размеры

DN, mm	L, mm	Н1, мм	Н2, мм
15	66	133,5	27,5
20	76	133,5	27,5
25	76	133,5	27,5
32	114	151	37,0
40	132	161	43,7
50	140	161	43,7

Центральный офис • ООО «Данфосс»

Россия, 143581 Московская обл., г. Истра, д. Лешково, 217.

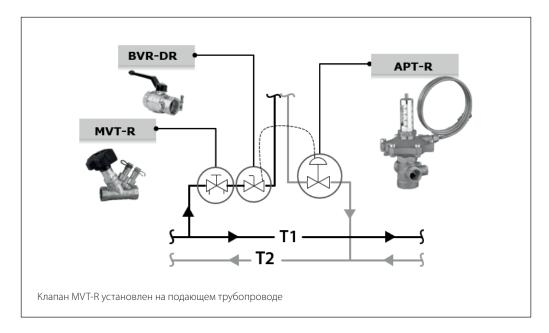
Телефоны: +7(495) 792-57-57 (Москва), +8 (800) 700 888 5 (регионы). E-mail: he@danfoss.ru open.danfoss.ru

Компания «Данфосс» не несет ответственности за опечатки в каталогах, брошюрах и других изданиях, а также оставляет за собой право на модернизацию своей продукции без предварительного оповещения. Это относится также к уже заказанным изделиям при условии, что такие изменения не повлекут за собой последующих корректировок уже согласованных спецификаций. Все торговые марки в этом материале являются собственностью соответствующих компаний. «Данфосс», логотип «Danfoss» являются торговыми марками компании ООО «Данфосс». Все права защищены.

Ручной балансировочный клапан MVT-R DN15-50

Описание и область применения

Клапан MVT-R — это ручной балансировочный клапан, предназначенный для гидравлической балансировки систем отопления, теплои холодоснабжения, а также систем ГВС.

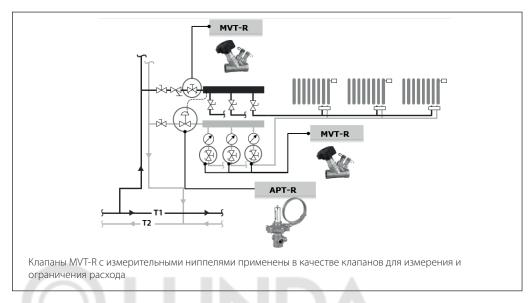

MVT-R помимо основной функции настройки требуемой пропускной способности имеет ряд дополнительных особенностей:

- простая настройка и блокировка настройки;
- 100% перекрытие потока;
- съемная и заменяемая настроечная рукоятка;
- оснащен двумя измерительными ниппелями игольчатого типа.

Ручной балансировочный клапан MVT-R предназначен для применения как основной тип балансировки, как правило в системах с постоянным расходом. Также возможно его применение в системах с переменным расходом в качестве дополнительных элементов для гидравлической увязки и настройки системы. Клапан может быть установлен как на обратном, так и на подающем трубопроводе. Выпускается с DN = 15–50 мм и имеет внутреннюю резьбу.

Примеры применения

Вариант применения клапана для вертикальной двухтрубной системы отопления. В данном решении предусмотрен ручной балансировочный клапан MVT-R на подающем трубопроводе. Ручной клапан позволяет провести измерения с помощью прибора компьютерной наладки и настроить регулятор АРТ-R на требуемый расход, при этом ручной балансировочный клапан настраивается на минимальный перепад 3 кПа.

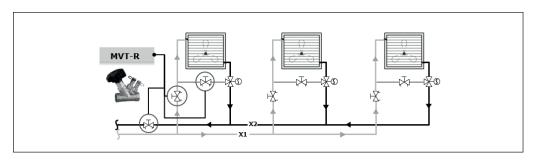


Ручной балансировочный клапан MVT-R DN15-50

Примеры применения *(продолжение)*


Вариант применения клапана MVT-R в горизонтальной двухтрубной системе отопления. Клапаны MVT-R в этом случае устанавливаются в этажных распределительных узлах

на каждом квартирном выпуске из коллектора, а также на подающем трубопроводе от стояка к коллектору.



Вариант применения в вертикальной однотрубной системе отопления. Клапаны MVT-R как правило устанавливаться на каждый стояк, обеспечивают увязку циркуляционных

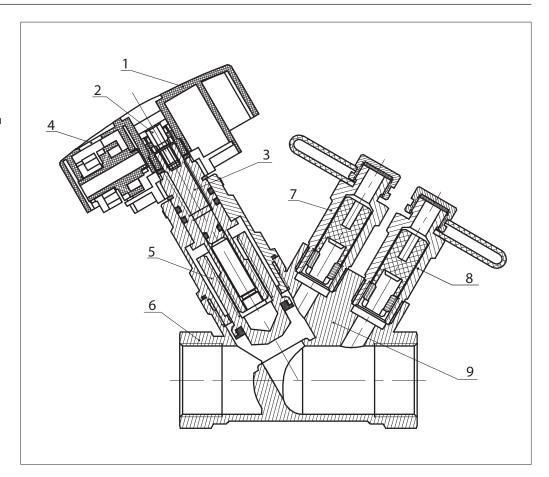
колец в системе с постоянным расходом и могут быть установлены как на обратном, так и на подающем трубопроводе.

Вариант применения в системе холодоснабжения с постоянным расходом. Клапаны MVT-R установлены перед узлом регулирования с трехходовым клапаном, а также на перемычке для дополнительного сопротивления и сохранения постоянного расхода через узел при закрытии трехходового регулирующего клапана.

Ручной балансировочный клапан MVT-R DN15-50

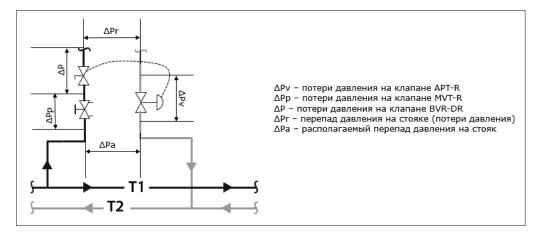
Номенклатура и кодовые номера для оформления заказа

Клапан MVT-R с внутренней резьбой


Эскиз	DN, mm	Пропускная способ- ность Kvs, м³/ч	Размер внутр. резьбы по ISO 7/1, дюймы	Кодовый номер
	15	4,11	Rp ½	003Z4081R
	20	6,6	Rp 3/4	003Z4082R
The American	25	9	R _p 1	003Z4083R
	32	15	Rp 1¼	003Z4084R
and the second	40	20	Rp 1½	003Z4085R
	50	32	Rp 2	003Z4086R

Технические характеристики

Номинальный диаметр, мм	15–50	
Макс. рабочее давление PN, бар	16	
Испытательное давление, бар	25	
Макс. перепад давления на клапане, бар	1,5	
Протечка при перекрытии	Без видимой протечки ISO5208	
Рабочая температура среды, С	0120	
Температура транспортировки и хранения, С	-4070	
Холодоноситель	Этиленгликоль, пропиленгликоль 50 %	
Материалы и детали, контактирующие с водой	^	
Корпус клапана	Латунь	
Золотник	Латунь	
Уплотнения	EPDM	


Устройство

- 1. Настроечная рукоятка
- 2. Винт фиксации рукоятки
- 3. Винт блокировки настройки
- 4. Окно индикации значения настройки
- 5. Шток клапана
- 6. Корпус клапана
- 7. Измерительный ниппель после седла (синий)
- 8. Измерительный ниппель до седла (красный)
- 9. Блок измерительных ниппелей

Примеры подбора клапана

Пример 1

Дано:

Вертикальная система радиаторного отопления с термостатическими клапанами и функцией преднастройки. Расчетный расход теплоносителя через стояк (Q): 900 л/ч. Минимальный располагаемый напор (Δ Pa):

Расчетные потери давления на стояке при расчетном расходе (ΔPr): 10 кПа. Диаметр стояка 25 мм.

Найти:

Размер и настройку клапана MVT-R.

Решение:

Как правило радиаторные клапаны оснащены функцией преднастройки и в этом случае допустимо выбрать решение без клапана партнера. Но наличие на подаче клапана, который имеет настройку пропускной способности и возможность подключить прибор наладки к измерительным ниппелям облегчает пуско-наладочные и эксплуатационные работы. В качестве такого клапана предусмотрен MVT-R.

В случае применения клапанов APT-R в качестве основного элемента балансировки, перепад на клапане MVT-R принимается минимально необходимым для проведения точных измерений и равен 3 кПа, а диаметр выбирается по диаметру стояка.

Расчетное значение пропускной способности на клапане MVT-R составляет:

$$K_V = G (M^3/4)/\sqrt{\Delta P} (6ap) = 0.9/\sqrt{0.03} = 5.2 M^3/4.$$

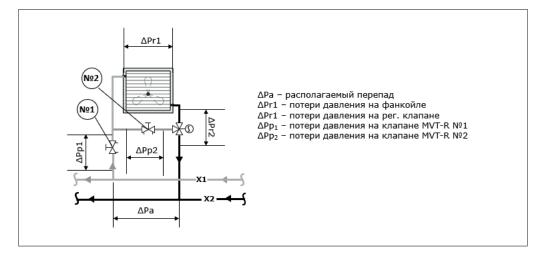

Диаметр клапана MVT-R принимаем по диаметру стояка 25 мм, настройка N=2,3 (см. таблицу K_V при различных настройках).

Таблица значений K_V при различных настройках клапана MVT-R

			Настройка							
Тип	DN	4	3,5	3	2,5	2	1,5	1	0,5	
					Κ _ν	/S				
	15	4,11	3,60	3,08	2,57	2,06	1,54	1,03	0,51	
	20	6,6	5,78	4,95	4,13	3,30	2,48	1,65	0,83	
MAVT D	25	9	7,88	6,75	5,63	4,50	3,38	2,25	1,13	
MVT-R	32	15	13,13	11,25	9,38	7,50	5,63	3,75	1,88	
	40	20	17,50	15,00	12,50	10,00	7,50	5,00	2,50	
	50	32	28,00	24,00	20,00	16,00	12,00	8,00	4,00	

Примеры подбора клапа- на (продолжение)

Пример 2

Дано:

Обвязка фанкойла системы холодоснабжения с постоянным расходом.

Расчетный расход через фанкойл (Q): 800 л/ч. Располагаемый напор (Δ Pa): 40 кПа.

Потери давления в фанкойле при расчетном расходе (Δ Pr1): 12 кПа.

Потери давления на регулирующем клапане при расчетном расходе ($\Delta Pr2$): 15 кПа. Диаметр подводки к фанкойлу 20 мм.

Найти:

Размер и настройку клапанов MVT-R №1 и №2.

Решение:

Часто диаметр ручных балансировочных клапанов принимается по диаметру трубопровода на котором он располагается, но в некоторых случаях при достаточно большом перепаде, клапаны могут быть на 1–2 типоразмера меньше трубы. Это обусловлено требуемым значением пропускной способности.

Клапан №1 необходим для увязки фанкойла в общей гидравлической системе.

Расчетное значения необходимого значения потерь на клапане MNT-R №1 составят:

$$\Delta$$
Pp1 = Δ Pa – Δ Pr1– Δ Pr2 =12 κΠa.

Расчетное значение пропускной способности на клапане MVT-R №1 составляет:

$$K_V = G (M^3/4)/\sqrt{\Delta P} (6ap) = 0.8/\sqrt{0.12} = 2.3 M^3/4.$$

Диаметр клапана MVT-R №1 принимаем по диаметру стояка 20 мм, настройка N = 1,4 (см. таблицу K_V при различных настройках).

Клапан №2 необходим для сохранения постоянного расхода через фанкойл при закрытии трехходового клапана.

Расчетное значения необходимого значения потерь на клапане MNT-R №2 составят:

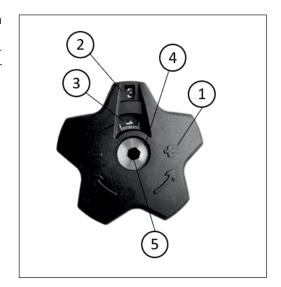
$$\Delta$$
Pp2 = Δ Pr1 = 40–12–15 = 11 κΠa

Расчетное значение пропускной способности на клапане MVT-R №1 составляет:

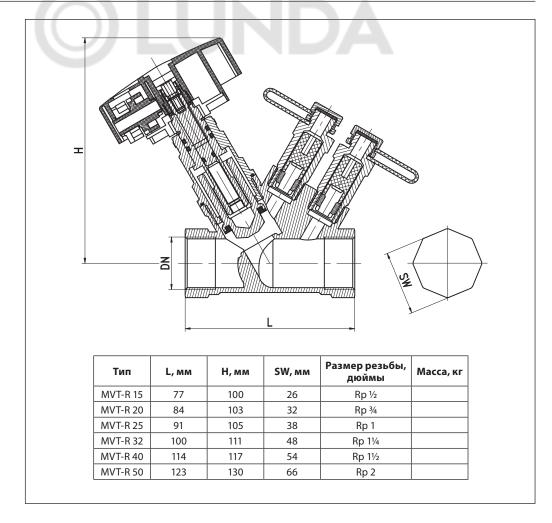
$$K_V = G (M^3/4)/\sqrt{\Delta P} (6ap) = 0.8/\sqrt{0.11} = 2.4 M^3/4.$$

Диаметр клапана MVT-R №1 принимаем по диаметру стояка 20 мм, настройка N = 1,5 (см. таблицу K_V при различных настройках).

Монтаж


Перед установкой клапана трубопроводы системы должны быть промыты.

- 1. Следует предусмотреть свободное пространство вокруг клапана для его установки на трубопровод.
- 2. Стрелка на корпусе клапана должна совпадать с направлением движения среды.
- 3. Рукоятка может быть демонтирована. Для этого необходимо открутить винт 00 с помощью стандартного шестигранника.


Настройка

Настройка производится с помощью рукоятки без использования дополнительных инструментов. Вращение рукоятки по часовой стрелке уменьшает значение пропускной способности, против часовой увеличивает. На рукоятке 1 указаны стрелки и символы «+» и «-» для более удобного понимания направления вращения. При вращении рукоятки в окне 2 отображаются целые значения настройки, в окне 3 десятые. Значение 0 означает полное закрытие клапана. С помощью винта 4 можно ослабить крепление рукоятки шестигранным ключом для ее демонтажа.

Через отверстие 5, с помощью шестигранника меньшего размера, можно заблокировать настройку.

Габаритные и присоединительные размеры

Центральный офис • ООО «Данфосс»

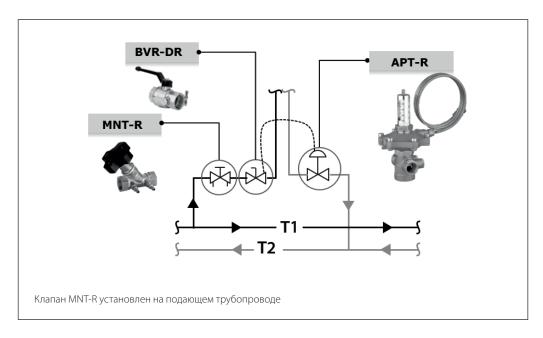
Россия, 143581 Московская обл., г. Истра, д. Лешково, 217.

Телефоны: +7(495) 792-57-57 (Москва), +8 (800) 700 888 5 (регионы). E-mail: he@danfoss.ru open.danfoss.ru

Ручной балансировочный клапан MNT-R DN15-50

Описание и область применения

Клапан MNT-R — это ручной балансировочный клапан, предназначенный для гидравлической балансировки систем отопления,

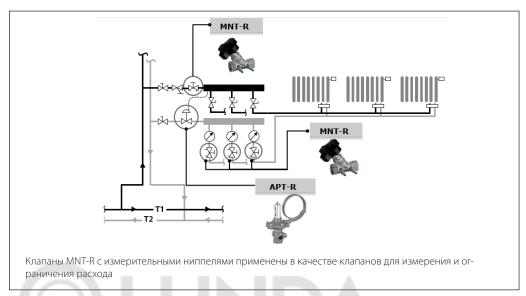

тепло- и холодоснабжения, а также систем ГВС. MNT-R помимо основной функции настройки требуемой пропускной способности имеет ряд дополнительных особенностей:

- простая настройка;
- 100% перекрытие потока;
- съемная и заменяемая настроечная рукоятка;
- оснащен двумя измерительными ниппелями.

Ручной балансировочный клапан MNT-R предназначен для применения как основной тип балансировки, как правило в системах с постоянным расходом. Также возможно его применение в системах с переменным расходом в качестве дополнительных элементов для гидравлической увязки и настройки системы. Клапан может быть установлен как на обратном, так и на подающем трубопроводе. Выпускается с DN = 15–50 мм и имеет внутреннюю резьбу.

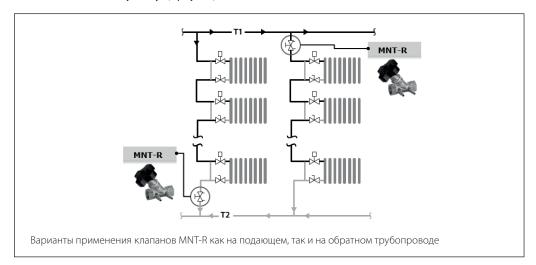
Примеры применения

Вариант применения клапана для вертикальной двухтрубной системы отопления. В данном решении предусмотрен ручной балансировочный клапан MNT-R на подающем трубопроводе. Ручной клапан позволяет провести измерения с помощью прибора компьютерной наладки и настроить регулятор АРТ-R на требуемый расход, при этом ручной балансировочный клапан настраивается на минимальный перепад 3 кПа.

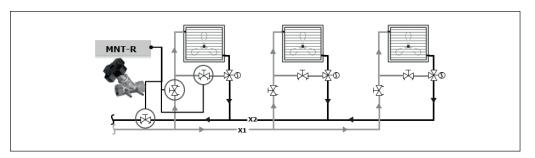


Ручной балансировочный клапан MNT-R DN15-50

Примеры применения *(продолжение)*


Вариант применения клапана MNT-R в горизонтальной двухтрубной системе отопления. Клапаны MNT-R в этом случае устанавливаются в этажных распределительных узлах

на каждом квартирном выпуске из коллектора, а также на подающем трубопроводе от стояка к коллектору.



Вариант применения в вертикальной однотрубной системе отопления. Клапаны MNT-R как правило устанавливаются на каждый стояк, обеспечивают увязку циркуляционных

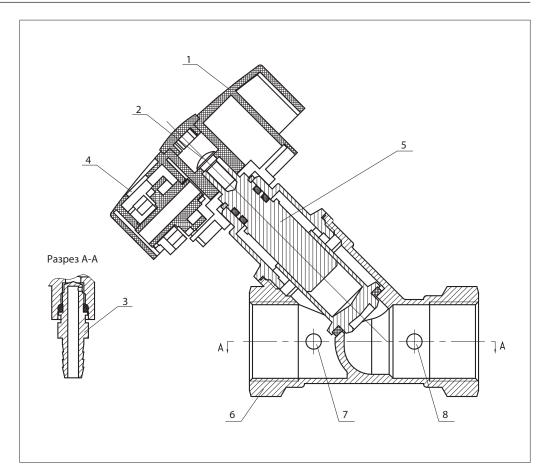
колец в системе с постоянным расходом и могут быть установлены как на обратном, так и на подающем трубопроводе.

Вариант применения в системе холодоснабжения с постоянным расходом. Клапаны MNT-R установлены перед узлом регулирования с трехходовым клапаном, а также на перемычке для дополнительного сопротивления и сохранения постоянного расхода через узел при закрытии трехходового регулирующего клапана.

Ручной балансировочный клапан MNT-R DN15-50

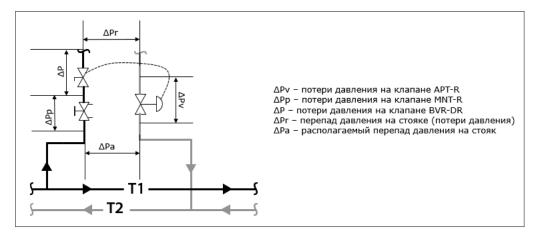
Номенклатура и кодовые номера для оформления заказа

Клапан MNT-R с внутренней резьбой


Эскиз	DN, mm	Пропускная способ- ность Kvs, м³/ч	Размер внутр. резьбы по ISO 7/1, дюймы	Кодовый номер
	15	4,11	Rp ½	003Z2331R
	20	6	Rp 3/4	003Z2332R
	25	8,5	R _p 1	003Z2333R
	32	10	Rp 1¼	003Z2334R
	40	12	Rp 1½	003Z2335R
	50	16	Rp 2	003Z2351R

Технические характеристики

Номинальный диаметр, мм	15–50						
Макс. рабочее давление PN, бар	16						
Испытательное давление, бар	25						
Макс. перепад давления на клапане, бар	1,5						
Протечка при перекрытии	Без видимой протечки ISO5208						
Рабочая температура среды, С	0120						
Температура транспортировки и хранения, С	-4070						
Холодоноситель	Этиленгликоль, пропиленгликоль до 50 %						
Материалы и детали, контактирующие с водой							
Корпус клапана	Латунь						
Золотник	Латунь						
Уплотнения	EPDM						
71	2. 5						


Устройство

- 1. Настроечная рукоятка
- 2. Винт фиксации рукоятки
- 3. Измерительный ниппель стандартного типа
- 4. Окно индикации значения настройки
- 5. Шток клапана
- 6. Корпус клапана
- 7. Измерительный ниппель после седла (синий)
- 8. Измерительный ниппель до седла (красный)

Примеры подбора клапана

Пример 1

Дано:

Вертикальная система радиаторного отопления с термостатическими клапанами и функцией преднастройки. Расчетный расход теплоносителя через стояк (Q): 900 л/ч. Минимальный располагаемый напор (Δ Pa): 40 кПа.

Расчетные потери давления на стояке при расчетном расходе (ΔPr): 10 кПа. Диаметр стояка 25 мм.

Найти:

Размер и настройку клапана MNT-R.

Решение:

Как правило радиаторные клапаны оснащены функцией преднастройки и в этом случае допустимо выбрать решение без клапана партнера. Но наличие на подаче клапана, который имеет настройку пропускной способности и возможность подключить прибор наладки к измерительным ниппелям облегчает пуско-наладочные и эксплуатационные работы. В качестве такого клапана предусмотрен MNT-R.

В случае применения клапанов APT-R в качестве основного элемента балансировки, перепад на клапане MNT-R принимается минимально необходимым для проведения точных измерений и равен 3 кПа, а диаметр выбирается по диаметру стояка.

Расчетное значение пропускной способности на клапане MNT-R составляет:

$$K_V = G (M^3/4)/\sqrt{\Delta P} (6ap) = 0.9/\sqrt{0.03} = 5.2 M^3/4.$$

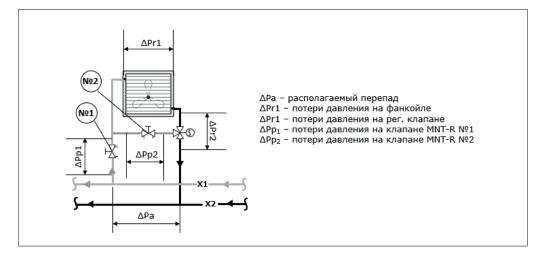

Диаметр клапана MNT-R принимаем по диаметру стояка 25 мм, настройка N=2,3 (см. таблицу K_V при различных настройках).

Таблица значений K_V при различных настройках клапана MNT-R

	DN	Настройка							
Тип		4	3,5	3	2,5	2	1,5	1	0,5
		K _{VS}							
MNT-R	15	4,11	3,60	3,08	2,57	2,06	1,54	1,03	0,51
	20	6	5,25	4,50	3,75	3,00	2,25	1,50	0,75
	25	8,5	7,44	6,38	5,31	4,25	3,19	2,13	1,06
	32	10	8,75	7,50	6,25	5,00	3,75	2,50	1,25
	40	12	10,50	9,00	7,50	6,00	4,50	3,00	1,50
	50	16	14,00	12,00	10,00	8,00	6,00	4,00	2,00
			· ·		· '	· '			

Примеры подбора клапана (продолжение)

Пример 2

Дано:

Обвязка фанкойла системы холодоснабжения с постоянным расходом.

Расчетный расход через фанкойл (Q): 800 л/ч. Располагаемый напор (Δ Pa): 40 кПа.

Потери давления в фанкойле при расчетном расходе (Δ Pr1): 12 кПа.

Потери давления на регулирующем клапане при расчетном расходе (ΔPr2): 15 кПа. Диаметр подводки к фанкойлу 20 мм.

Найти:

Размер и настройку клапанов МПТ-R №1 и №2.

Решение:

Часто диаметр ручных балансировочных клапанов принимается по диаметру трубопровода на котором он располагается, но в некоторых случаях при достаточно большом перепаде, клапаны могут быть на 1–2 типоразмера меньше трубы. Это обусловлено требуемым значением пропускной способности.

Клапан №1 необходим для увязки фанкойла в общей гидравлической системе.

Расчетное значения необходимого значения потерь на клапане MNT-R №1 составят:

$$\Delta$$
Pp1 = Δ Pa – Δ Pr1– Δ Pr2 =12 κΠa.

Расчетное значение пропускной способности на клапане MNT-R №1 составляет:

$$K_V = G (M^3/4)/\sqrt{\Delta P} (6ap) = 0.8/\sqrt{0.12} = 2.3 M^3/4.$$

Диаметр клапана MNT-R №1 принимаем по диаметру стояка 20 мм, настройка N = 1,5 (см. таблицу K_V при различных настройках).

Клапан №2 необходим для сохранения постоянного расхода через фанкойл при закрытии трехходового клапана.

Расчетное значения необходимого значения потерь на клапане MNT-R №2 составят:

$$\Delta$$
Pp2 = Δ Pr1 = 40 – 12 – 15 = 13 κΠa

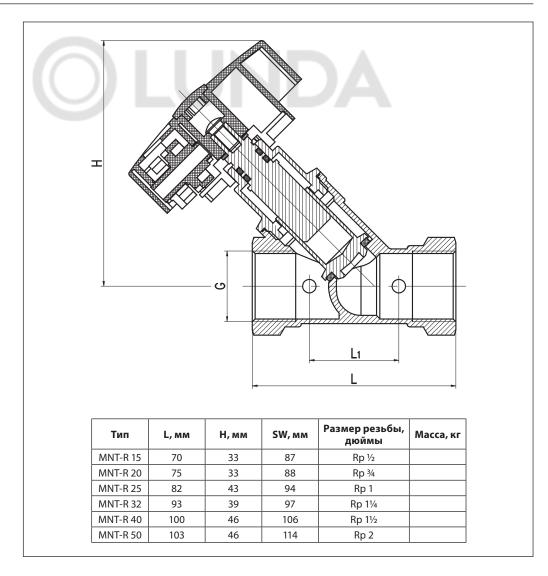
Расчетное значение пропускной способности на клапане MNT-R №1 составляет:

$$K_V = G (M^3/4)/\sqrt{\Delta P} (6ap) = 0.8/\sqrt{0.11} = 2.4 M^3/4.$$

Диаметр клапана MNT-R №1 принимаем по диаметру стояка 20 мм, настройка N=1,7 (см. таблицу K_V при различных настройках).

Монтаж

Перед установкой клапана трубопроводы системы должны быть промыты.


- 1. Следует предусмотреть свободное пространство вокруг клапана для его установки на трубопровод.
- 2. Стрелка на корпусе клапана должна совпадать с направлением движения среды.
- 3. Рукоятка может быть демонтирована. Для этого необходимо открутить винт 4 с помощью стандартного шестигранника.

Настройка

Настройка производится с помощью рукоятки без использования дополнительных инструментов. Вращение рукоятки по часовой стрелке уменьшает значение пропускной способности, против часовой увеличивает. На рукоятке 1 указаны стрелки и символы «+» и «-» для более удобного понимания направления вращения. При вращении рукоятки в окне 2 отображаются целые значения настройки, в окне 3 десятые. Значение 0 означает полное закрытие клапана. С помощью винта 4 можно ослабить крепление рукоятки крестовой отверткой для ее демонтажа.

Габаритные и присоединительные размеры

Центральный офис • ООО «Данфосс»

Россия, 143581 Московская обл., г. Истра, д. Лешково, 217.

Телефоны: +7(495) 792-57-57 (Москва), +8 (800) 700 888 5 (регионы). E-mail: he@danfoss.ru open.danfoss.ru

Компания «Данфосс» не несет ответственности за опечатки в каталогах, брошюрах и других изданиях, а также оставляет за собой право на модернизацию своей продукции без предварительного оповещения. Это относится также к уже заказанным изделиям при условии, что такие изменения не повлекут за собой последующих корректировок уже согласованных спецификаций. Все торговые марки в этом материале являются собственностью соответствующих компаний. «Данфосс», логотип «Danfoss» являются торговыми марками компании ООО «Данфосс». Все права защищены.